A SZEMERÉDI TYPE THEOREM FOR SETS OF POSITIVE DENSITY IN \mathbf{R}^{k}

ΒY

J. BOURGAIN Department of Mathematics, I.H.E.S., Bures-sur-Yvette, France

ABSTRACT

Let $k \ge 2$ and A a subset of \mathbf{R}^k of positive upper density. Let V be the set of vertices of a (non-degenerate) (k-1)-dimensional simplex. It is shown that there exists l = l(A, V) such that A contains an isometric image of $l' \cdot V$ whenever l' > l. The case k = 2 yields a new proof of a result of Katznelson and Weiss [4]. Using related ideas, a proof is given of Roth's theorem on the existence of arithmetic progressions of length 3 in sets of positive density.

1. Introduction

The following result has been obtained by Katznelson and Weiss [4].

THEOREM 1. Whenever A is a subset of \mathbb{R}^2 with positive upper density, there is a number l = l(A) such that |x - y| = l' for some $x, y \in A$, fixing any l' > l. Recall that $A \subset \mathbb{R}^k$ has positive upper density provided

$$\delta(A) = \overline{\lim_{R}} \frac{|B(0,R) \cap A|}{|B(0,R)|} > 0$$

where $B(0, R) = \{x \in \mathbb{R}^k ; |x| < R\}.$

Their argument combines ergodic theory and measure theory. In the next section, a short proof will be given based on elementary harmonic analysis. This proof can be elaborated in order to get the result mentioned above:

THEOREM 2. Assume $A \subset \mathbb{R}^k$, $\delta(A) > 0$ and V a set of k points spanning a (k-1)-dimensional hyperplane. There exists some number l such that A contains an isometric copy of l'. V whenever l' > l.

REMARKS. (a) Theorem 2 is of the same nature as the generalizations of

Received July 30, 1985

J. BOURGAIN

Szemerédy's theorem [7] obtained in [3] (see also [2]). More precisely, the dilations are replaced by rotations. Although the method presented here requires an increasing dimension, the exact rôle of the dimension k does not seem well understood yet.

(b) The following simple example clarifies the necessity of the non-degeneracy hypothesis on the set V. Let $V = \{-1, 0, 1\}$ and $A = \{x \in \mathbb{R}^k; |x|^2 \in [0, \frac{1}{10}] + \mathbb{Z}_+\}$. Clearly $\delta(A) > 0$. Assume now $x \in A$ and $y \in \mathbb{R}^k$, |y| = t satisfying $x + y \in A$ and $x - y \in A$. Then

$$2t^{2} = 2|y|^{2} = |x + y|^{2} + |x - y|^{2} - 2|x|^{2} \in [-\frac{1}{5}, \frac{1}{5}] + \mathbb{Z}_{+}$$

implying the existence of some $k \in \mathbb{Z}_+$ s.t.

$$\left|t-\sqrt{\frac{k}{2}}\right|<\frac{1}{5\sqrt{k}}.$$

Consequently, there are arbitrary large values of l such that A does not contain an isometric copy of l.V. This example permits several variations.

It is easily seen that Theorems 1 and 2 result from the following "compact" version.

PROPOSITION 3. Let V be as in Theorem 2, diam V < 1. Let $A \subset [0,1]^k$, $|A| > \varepsilon$ and $0 < t_i < 1$ a sequence satisfying $t_{j+1} < \frac{1}{2}t_j$. Then there exists $j \leq J(\varepsilon, V)$ such that A contains an isometric image of t_j . V. In fact, for $t = t_j$

(1)
$$\int_{\mathbf{R}^k} \int_{SO(k)} f(x)f(x+t0a_1)\cdots f(x+t0a_{k-1})dxdO > \frac{1}{2}\varepsilon^k$$

where $f = \chi_A$, $V = \{0, a_1, ..., a_{k-1}\}$ and dO refers to the normalized invariant measure on the orthogonal group SO(k).

For the sake of clarity, the case k = 2 will be handled separately. The complete proof of Proposition 3 is given in section 3 of this paper. The last section is an appendix in which it is shown how a new proof of Roth's theorem (see [5]) can be obtained using similar ideas. The letters $0 < c, C < \infty$ denote numerical constants

2. A proof of the Katznelson-Weiss theorem

As usual $\hat{F}(\xi) = \int_{\mathbf{R}^k} F(x) e^{-2\pi i \langle x, \xi \rangle} dx$ stands for the Fourier transform. In case k = 2, the left member of (1) becomes

(2)
$$\int \int f(x)f(x+ty)dx\sigma(dy) = \int \hat{f}(\xi)\hat{f}(-\xi)\hat{\sigma}(t\xi)d\xi = \int |\hat{f}(\xi)|^2\hat{\sigma}(t|\xi|)d\xi$$

where σ denotes the normalized arc-length measure of the unit circle. Thus

(3)
$$|\hat{\sigma}(\xi)| \leq C |\xi|^{-\frac{1}{2}}$$
 and $|1 - \hat{\sigma}(\xi)| < C |\xi|$.

Also, by definition of f

$$|\hat{f}(\xi) - \hat{f}(0)| \leq 2\pi \int_{A} |\langle x, \xi \rangle| dx; \qquad |\hat{f}(\xi) - |A|| < C |\xi||A|.$$

Hence, for $\delta > t$ to be specified later, as a consequence of (3)

$$\int |\hat{f}(\xi)|^2 \hat{\sigma}(t \,|\, \xi \,|) d\xi = \left\{ \int_{[|\xi| \le \delta t^{-1}]} + \int_{[\delta t^{-1} < |\xi| < \delta^{-1} t^{-1}]} + \int_{[|\xi| > \delta^{-1} t^{-1}]} \right\} |\hat{f}(\xi)|^2 \hat{\sigma}(t\xi) d\xi$$
$$\geq \frac{1}{2} \int_{[|\xi| \le \delta t^{-1}]} |\hat{f}(\xi)|^2 d\xi - \int_{[\delta t^{-1} < |\xi| < \delta^{-1} t^{-1}]} |\hat{f}(\xi)|^2 d\xi$$
$$- C \delta^{1/2} \int |\hat{f}(\xi)|^2 d\xi$$
$$\geq C_1 |A|^2 - C \delta^{1/2} |A| - \int_{[\delta t^{-1} < |\xi| < \delta^{-1} t^{-1}]} |\hat{f}(\xi)|^2 d\xi.$$

Assume $\delta \ll |A|^2$. It is clear that there exists some

$$j \leq C\left(\log\frac{1}{\delta}\right)\varepsilon^{-1} \sim \frac{1}{\varepsilon}\log\frac{1}{\varepsilon}$$

satisfying

$$\int_{[\delta t_j^{-1} < |\xi| < \delta^{-1} t_j^{-1}]} |\hat{f}(\xi)|^2 d\xi < \frac{1}{3} C_1 \varepsilon^2$$

and therefore

$$\iint f(x)f(x+t_iy)dx\sigma(dy) \ge \frac{1}{2}C_1|A|^2. \qquad \text{QED}$$

REMARK. Combined with the results on the spherical maximal function in the plane, Theorem 1 can be improved as follows:

THEOREM 1'. If $A \subset \mathbb{R}^2$, $\delta(A) > 0$, there exists l = l(A) such that whenever $l_1 > l$ there is a point $x \in A$ fulfilling the condition

$$\{|x-y|; y \in A\} \supset [l, l_1].$$

Denote P_t the Poisson-semigroup kernel on \mathbb{R}^k . Thus $\hat{P}_t(\xi) = e^{-t|\xi|}$. In general, let $K_t(x) = t^{-k}K(t^{-1}x)$ satisfying $\hat{K}_t(\xi) = \hat{K}(t\xi)$.

The key estimate of [1] related to the planar spherical maximal operator can be formulated as follows:

PROPOSITION 1. For p > 2, there are constants $C(p) < \infty$ and $\alpha(p) > 0$ satisfying

(4)
$$\left\| \max_{s \ge t_0} \left\| [f - (f * P_t)] * \sigma_s \right\|_p \le C(p) \left(\frac{t}{t_0} \right)^{\alpha(p)} \|f\|_p, \quad t_0 > t$$

Similarly, as in proving Theorem 1, the negation of Theorem 1' leads to a subset A of $[0,1]^2$, $|A| > \varepsilon$ and a sequence of positive numbers

 $s_1 > t_1 > s_2 > t_2 > \cdots > s_l > t_l$

where J can be taken arbitrarily large, satisfying the properties

(5)
$$s_{j+1} < \frac{1}{2}t_j$$

and

$$x \in A \cap [s_{i}, 1-s_{i}]^{2} \Rightarrow \sup_{s_{i} > i > i_{j}} [(1_{R} - f) * \sigma_{i}] = 1$$
 ($f = 1_{A}$ and $R = [0, 1]^{2}$).

Hence, we may write for a fixed $\tau > 0$ and choosing j < J large enough

(6)
$$\int f \sup_{s_j > \iota > \iota_j} \left[(1_R - f) * \sigma_\iota \right] < (1 - \tau) \int f.$$

Fix $\delta > 0$. As a consequence of (4), we may write

н

(7)
$$\begin{split} \sup_{s_{j}>t>t_{i}} \left[(1_{R}-f)*\sigma_{t} \right] &- \sup_{s_{j}>t>t_{i}} \left[(1_{R}-f)*P_{\delta t_{j}}*\sigma_{t} \right] \right]_{1} \\ &\leq \left\| \sup_{t>t_{j}} \left| \left[f-f*P_{\delta t_{j}} \right]*\sigma_{t} \right\|_{p} + \tau < C\delta^{\alpha} + \tau. \end{split}$$

For $t < s_i$, also

 $(8) |[(1_R - f) * P_{\delta^{-1}s_j} * \sigma_t](x) - [(1_R - f) * P_{\delta^{-1}s_j}](x)| \leq ||P_{\delta^{-1}s_j} - (P_{\delta^{-1}s_j} * \sigma_t)||_1 < C\delta.$ Thus, again by (4), using (6), (7), (8)

$$C \| [(1_R - f) * P_{\delta^{-1}s_j}] - [(1_R - f) * P_{\delta t_j}] \|_p$$

$$\geq \int f \sup_{s_j > i > t_j} \{ [(1_R - f) * P_{\delta t_j} * \sigma_i] - [(1_R - f) * P_{\delta^{-1}s_j} * \sigma_i] \}$$

$$\geq (1 - \tau) \int f - \int f [(1_R - f) * P_{\delta^{-1}s_j}] - C\delta^{\alpha} - \tau$$

$$\geq -2\tau \int f + \left(\int f\right)^2 - C\delta^{\alpha} - \tau$$

$$\geq (\varepsilon - 2\tau)\varepsilon - C\delta^{\alpha} - \tau.$$

Taking τ, δ small enough and J sufficiently large, a contradiction follows. Indeed, if $t_{j+1} < \frac{1}{2}t_j$, then for $2 \le p \le \infty$

$$\left\{\sum_{j} \|(f * P_{i_{j+1}}) - (f * P_{i_j})\|_p^p\right\}^{1/p} \leq C \|f\|_p.$$

This completes the proof of Theorem 1'.

3. Proof of Theorem 2 in the general case

Let $V = \{0, a_1, a_2, ..., a_{k-1}\}$ be non-degenerated. Simple invariance arguments show that the left member of (1) may be rewritten as

$$\int f(x)f(x+ty_1)f(x+ty_2)\cdots f(x+ty_{k-1})\sigma^{(k-1)}(dy_1)\sigma^{(k-2)}_{y_1}(dy_2)\cdots\sigma^{(1)}_{y_1,\dots,y_{k-2}}(dy_{k-1})$$
(9)

where $\sigma_{y_1,\ldots,y_{k-j-1}}^{(j)}$ is the average on a (*j*)-dimensional sphere in \mathbb{R}^k dependent on the points y_1,\ldots,y_{k-j-1} already fixed and on V. We will use the estimate

(10)
$$|\sigma_{y_1,\ldots,y_{k-j-1}}^{\prime(j)}(\xi)| \leq C_v [1 + \operatorname{dist}(\xi, [y_1,\ldots,y_{k-j-1}])]^{-j/2}$$

which is a consequence of the decay at infinity of the Fourier transform of the *j*-sphere in \mathbb{R}^{j+1} . Denote $G_{k,m}$ (m < k) the Grassmannian of *m*-dimensional subspaces of \mathbb{R}^k endowed with the normalized Haar-measure.

LEMMA 1. For m < k

(11)
$$\int_{\mathbf{R}^{k}} \int_{G_{k,m}} \left[\operatorname{dist}(\xi,F) + 1 \right]^{-\rho} |\hat{f}(\xi)|^{2} (1 - e^{-\delta|\xi|})^{2} d\xi dF < C_{k} (\delta + \delta^{\rho/2}) \|f\|_{2}^{2}.$$

PROOF. Estimate the left member of (11) as

$$C\delta \|f\|_{2}^{2} + C\left\{\sup_{|\xi|>\delta^{-1/2}}\int_{G_{k,m}} [\operatorname{dist}(\xi,F)+1]^{-\rho}dF\right\} \|f\|_{2}^{2}.$$

PROOF OF THEOREM 2. Denote for simplicity

$$d\Omega_{j}(y_{1},...,y_{j}) = \sigma^{(k-1)}(dy_{1})\sigma^{(k-2)}_{y_{1}}(dy_{2})\cdots\sigma^{(k-j)}_{y_{1},...,y_{j-1}}(dy_{j}).$$

Fix $\delta > 0$ and compare the expressions

(12)
$$\int f(x)f(x+ty_1)\cdots f(x+ty_{k-2})f(x+ty_{k-1})dxd\Omega_{k-1}(y_1,\ldots,y_{k-1})$$

and

(13)
$$\int f(x)f(x+ty_1)\cdots f(x+ty_{k-2})(f*P_{\delta t})(x+ty_{k-1})dxd\Omega_{k-1}(y_1,\ldots,y_{k-1})$$

which difference can be estimated as

$$|(12) - (13)| \leq \int \|[f - (f * P_{\delta t})] * [\sigma_{y_1, \dots, y_{k-2}}^{(1)}]_{\ell} \|_2 d\Omega_{k-2}(y_1, \dots, y_{k-2})$$

or by Parseval's identity, using (10), (11), as

$$(14) C_{\nu} \left\{ \int_{\mathbf{R}^{k}} \int_{G_{k,k-2}} |\hat{f}(\xi)|^{2} [1 - e^{-\delta t |\xi|}]^{2} \{1 + \operatorname{dist}(t\xi,F)\}^{-1/2} d\xi dF \right\}^{1/2} \leq C_{\nu} \delta^{1/4} ||f||_{2}.$$

Next we compare the expressions

(15)
$$\int f(x)(f * P_{\delta^{-1}t})(x)f(x + ty_1) \cdots f(x + ty_{k-2})dx d\Omega_{k-1}(y_1, \dots, y_{k-1})$$

and

$$(16) \int f(x)f(x+ty_1)\cdots f(x+ty_{k-2})(f*P_{\delta^{-1}t})(x+ty_{k-1})dxd\Omega_{k-1}(y_1,\ldots,y_{k-1}),$$

which difference is simply majorated by

(17)

$$\sup_{|y|<1} \|(f * P_{\delta^{-1}t})(x) - (f * P_{\delta^{-1}t})(x + ty)\|_{L^{2}(dx)} \\
\leq \sup_{|y|<1} \left\{ \int |\hat{f}(\xi)|^{2} |1 - e^{2\pi i \langle ty, \xi \rangle}|^{2} e^{-\delta^{-1}t |\xi|} d\xi \right\}^{1/2} \\
< C\delta \|f\|_{2}.$$

Collecting estimates, it now follows that

$$|(12) - (15)| \leq |(12) - (13)| + |(15) - (16)| + |(13) - (16)|$$
$$\leq C_{\nu} \delta^{1/4} ||f||_{2} + ||(f * P_{\delta^{-1}t}) - (f * P_{\delta t})||_{2}.$$

In the expression (15)

$$(15) = \int f(x)(f * P_{\delta^{-1}t})(x)f(x + ty_1) \cdots f(x + ty_{k-2})dxd\Omega_{k-2}(y_1, \dots, y_{k-2}),$$

the variable y_{k-1} does not appear any more. We treat (15) the same way as (12) where y_{k-2} plays the rôle of y_{k-1} . Thus defining

$$(17) = \int f(x)(f * P_{\delta^{-1}t})^2(x)f(x + ty_1) \cdots f(x + ty_{k-3})dxd\Omega_{k-3}(y_1, \ldots, y_{k-3})$$

similar computations give

$$|(15) - (17)| \leq C_{V}(\delta + \delta^{1/2}) ||f||_{2} + ||(f * P_{\delta^{-1}t}) - (f * P_{\delta t})||_{2}.$$

Iteration of the procedure yields

(18)
$$\begin{aligned} & \left| (12) - \int f(x) (f * P_{\delta^{-1}t})^{k-1}(x) dx \right| \\ & \leq C_V \left(k\delta + \sum_{\delta=1}^{k-1} \delta^{r/4} \right) \|f\|_2 + k \| (f * P_{\delta^{-1}t}) - (f * P_{\delta t}) \|_2. \end{aligned}$$

Further

$$\varepsilon^{k} \leq \int (f * P_{\delta^{-1}t})^{k}$$

$$\leq \int (f * P_{\delta^{-1}t})^{k-1} (f * P_{\delta t}) + \|(f * P_{\delta t}) - (f * P_{\delta^{-1}t})\|_{2}$$

$$\leq \int f \cdot (f * P_{\delta^{-1}t})^{k-1} + \|(f * P_{\delta^{-1}t})^{k-1} - [P_{\delta t} * (f * P_{\delta^{-1}t})^{k-1}]\|_{2}$$

$$+ \|(f * P_{\delta t}) - (f * P_{\delta^{-1}t})\|_{2}$$

where the second term is dominated by

$$\begin{split} \sqrt{2} \left\{ \int \left(f * P_{\delta^{-1}t} \right)^{2(k-1)} - \int \left[P_{\delta t/2} * \left(f * P_{\delta^{-1}t} \right)^{k-1} \right]^2 \right\}^{1/2} \\ &\leq \sqrt{2} \left\{ \int \left(f * P_{\delta^{-1}t} \right)^{2(k-1)} - \int \left(f * P_{\delta^{-1}t} * P_{\delta t/2} \right)^{2(k-1)} \right\}^{1/2} \\ &\leq Ck \left\| \left(f * P_{\delta^{-1}t} \right) - \left(f * P_{\delta^{-1}t} * P_{\delta t/2} \right) \right\|_2 \\ &\leq Ck\delta^2 \| f \|_2. \end{split}$$

Therefore, as a consequence of (18) and previous computation

$$(12) \geq \varepsilon^{k} - C_{\nu} k \delta^{1/4} \|f\|_{2} - \|(f * P_{\delta t}) - (f * P_{\delta^{-1}t})\|_{2} (k+1).$$

Taking suitable $t \in \{t_1 > t_2 > \cdots > t_J\}$ $(t_{j+1} < \frac{1}{2}t_j)$, we may dominate

$$\|(f * P_{\delta t}) - (f * P_{\delta^{-1}t})\|_2 \leq \frac{C}{J} \left(\log \frac{1}{\delta}\right) \|f\|_2$$

so that

$$(12) \geq \varepsilon^{k} - C_{\nu} k \left(\delta^{1/4} + J^{-1} \left(\log \frac{1}{\delta} \right) \right) \sqrt{\varepsilon} > \frac{1}{2} \varepsilon^{k}$$

for an appropriate choice of δ and J. This completes the proof.

4. Appendix: A proof of Roth's theorem on arithmetic progressions of length 3

Let G be a compact Abelian group and $\Gamma = \hat{G}$ the dual group.

THEOREM 3. Given $\varepsilon > 0$, there exists $\varepsilon' = \varepsilon'(\varepsilon)$ such that whenever f is a function on G, $0 \le f \le 1$ and $\int_G f(x) dx > \varepsilon$, then

(1)
$$\iint_{G\times G} f(x)f(x+y)f(x+2y)dxdy > \varepsilon'.$$

Applying the result to a finite cyclic group $G = \mathbb{Z}/N\mathbb{Z}$ (taking N large enough) and $f = \chi_s$ ($S \subset G$, $|S| > \varepsilon$) yields Roth's theorem ([5]).

The proof is based on two lemmas:

LEMMA 2.
$$\left| \iint f_1(x) f_2(x+y) f_3(x+2y) K(y) dx dy \right| \leq \|K\|_{A(G)} \prod_{i=1}^3 \|\hat{f}_i\|_{\infty}^{1/3} \|f_i\|_2^{2/3}$$

Proof.

$$\begin{aligned} |\langle f_1, \int f_2(\cdot + y) f_3(\cdot + 2y) K(y) dy \rangle| \\ &\leq ||\hat{f}_1||_{\mathbf{x}} || \int f_2(\cdot + y) f_3(\cdot + 2y) K(y) dy ||_{\mathcal{A}(G)} \end{aligned}$$

and the second factor is dominated by $||K||_{A(G)} ||f_2||_2 ||f_3||_2$. Reversing the rôle of f_1, f_2 and making the product gives the estimate.

LEMMA 3 (Bozejko-Pelczynski theorem on invariant approximation, cf. [8]). Given a finite subset Λ of Γ and $\tau > 0$, there exists a kernel K satisfying

- (i) $K \ge 0, \ \hat{K} \ge 0 \ and \ \hat{K}(0) = 1,$
- (ii) $|\hat{K}(\gamma)-1| < \tau$ for $\gamma \in \Lambda$,
- (iii) $|\operatorname{supp} \hat{K}| < N(|\Lambda|, \tau).$

PROOF OF THEOREM 3. Let f be as in Theorem 1. Combining Lemmas 1 and 2, it follows that given a kernel K with \hat{K} finitely supported, there exists K' satisfying (i) of Lemma 2 and

(2)
$$|K - (K * K')| < \tau,$$
(3)
$$\left| \iint f(x)f(x + y)f(x + 2y)K(y)dxdy - \iint (f * K')(x)(f * K')(x + y)(f * K')(x + 2y)K(y)dxdy \right| < \tau,$$
(4)
$$|\operatorname{supp} \hat{K}'| < N'(|\operatorname{supp} \hat{K}|, ||\hat{K}||_{\infty}, \tau).$$

Take $K_0 = 1$. Previous considerations and an inductive construction lead to a sequence $\{K_i\}_{0 \le i < I}$ satisfying (i) of Lemma 2 (*I* is a positive integer of size $\sim \varepsilon^{-3}$).

Denote $f_i = f * K_i$. By (2), $|f_i - (f_i * K_{i+1})| < \tau$. Thus

$$\|f_{i+1} - f_i\|_2^2 = \|f_{i+1}\|_2^2 + \|f_i\|_2^2 - 2\langle f_i, f_{i+1}\rangle \le \|f_{i+1}\|_2^2 + \|f_i\|_2^2 - 2\langle f_i, f\rangle + 2\tau$$

$$\le \|f_{i+1}\|_2^2 - \|f_i\|_2^2 + 2\tau$$

and summation shows the existence of some $1 \le i \le I$ fulfilling

$$\|f_{i+1} - f_{i-1}\|_1 < 4\tau + 2I^{-1}$$

and hence

(5)
$$\left| \iint f_{i+1}(x)f_{i+1}(x+y)f_{i+1}(x+2y)K_i(y)dxdy - \iint f_{i-1}(x)f_{i-1}(x+y)f_{i-1}(x+2y)K_i(y)dxdy \right| < 12\tau + 6.$$

Assume (1) does not hold. From (3) and the construction $(K = K_i, K' = K_{i+1})$ it now follows from (5) that

(7)
$$\left| \iint f_{i-1}(x)f_{i-1}(x+y)f_{i-1}(x+2y)K_i(y)dxdy \right| < 13\tau + 6I^{-1} + \varepsilon' \|K_i\|_{*}.$$

Also, for $\gamma = 1, 2$

(8)

$$\iint |f_{i-1}(x + \gamma y) - f_{i-1}(x + (\gamma - 1)y)| K_i(y) dx dy$$

$$\leq \left\{ \iint |f_{i-1}(x + y) - f_{i-1}(x)|^2 K_i(y) dx dy \right\}^{1/2}$$

$$= \sqrt{2} \left(||f_{i-1}||_2^2 - \langle f_{i-1}, f_{i-1} * K_i \rangle \right)^{1/2}$$

$$< 4\sqrt{\tau}$$

which permits us to replace in the left member of (7) $f_{i-1}(x + y)$, $f_{i-1}(x + 2y)$ by $f_{i-1}(x)$. Hence

$$\varepsilon^{3} \leq \left(\int_{G} f\right)^{3} \leq \iint f_{i-1}(x)^{3} K_{i}(y) dx dy < 16\tau + 6I^{-1} + \varepsilon' \|K_{i}\|_{\infty}$$

giving a lower bound on ε' .

REMARK. It follows, for instance, from the construction of Salem and Spencer (see [6], p. 252) that $\varepsilon'(\varepsilon)$ is not a polynomial function of ε in Theorem

3. However, there exist methods providing better bounds than results from the previous argument.

References

1. J. Bourgain, On the spherical maximal function in the plane, preprint, IHES.

2. H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Analyse Math. 31 (1977), 204-256.

3. H. Furstenberg and Y. Katznelson, An ergodic Szemerédi theorem for commuting transformations, J. Analyse Math. 34 (1978), 275-291.

4. Y. Katznelson and B. Weiss, preprint.

5. K. Roth, On certain sets of integers, J. London Math. Soc. 28 (1953), 104-109.

6. R. Salem, Oeuvres Mathematiques, Hermann, Paris, 1967.

7. E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta Arith. 27 (1975), 199-245.

8. Séminaire d'Analyse Fonctionnelle, Ecole Polytechnique, 1978-79, Exp. 9.