ISRAEL JOURNAL OF MATHEMATICS, Vol. 54, No. 3, 1986

A SZEMEREDI TYPE THEOREM FOR
SETS OF POSITIVE DENSITY IN R*

BY

J. BOURGAIN
Department of Mathematics, I.H.E.S., Bures-sur-Yvette, France

ABSTRACT

Let k =2 and A a subset of R* of positive upper density. Let V be the set of
vertices of a (non-degenerate) (k — 1)-dimensional simplex. It is shown that
there exists | = I{A, V) such that A contains an isometric image of I'. V
whenever ' > |. The case k = 2 yields a new proof of a result of Katznelson and
Weiss [4]. Using related ideas, a proof is given of Roth’s theorem on the
existence of arithmetic progressions of length 3 in sets of positive density.

1. Introduction
The following result has been obtained by Katznelson and Weiss [4].

THEOREM 1. Whenever A is a subset of R® with positive upper density, there is
a number | = [(A) such that |x —y|=1' for some x,y € A, fixing any I'> .
Recall that A CR" has positive upper density provided

__|BO,R)NA|
3(A)EIIP—T§W

where B(0,R)={x €R*;|x|< R}.

Their argument combines ergodic theory and measure theory. In the next
section, a short proof will be given based on elementary harmonic analysis. This
proof can be elaborated in order to get the result mentioned above:

THEOREM 2. Assume A CR*, 8(A)>0 and V a set of k points spanning a
(k — 1)-dimensional hyperplane. There exists some number | such that A contains
an isometric copy of I'. V whenever I'> L

ReMARKs. (a) Theorem 2 is of the same nature as the generalizations of

Received July 30, 1985

307



308 J. BOURGAIN Isr. J. Math.

Szemerédy’s theorem [7] obtained in [3] (see also [2]). More precisely, the
dilations are replaced by rotations. Although the method presented here
requires an increasing dimension, the exact role of the dimension k does not
seem well understood yet.

(b) The following simple example clarifies the necessity of the non-degeneracy
hypothesis on the set V. Let V ={~1,0,1} and A ={x €R*;|x [ €[0,5] + Z.}.
Clearly 8(A)>0. Assume now x € A and y ER", |y| =1 satisfying x + y € A
and x —y € A. Then

20=2|yP=lx+yP+|x—yl-2|xE€[-4i]+Z,

implying the existence of some k €Z, s.t.
1

k
o~ Fel

21 5Vk
Consequently, there are arbitrary large values of [ such that A does not contain
an isometric copy of L V. This example permits several variations. ‘

It is easily seen that Theorems 1 and 2 result from the following “‘compact”
version.

<

PROPOSITION 3. Let V be as in Theorem 2, diam V <1. Let A C[0,1],
|A|> ¢ and 0< , <1 a sequence saisfying t;., <11t Then there exists j = J(g, V)
such that A contains an isometric image of . V. In fact, for t = {;

(1) Lk Lom fE)f(x +10ar)- - f(x + t0a,-)dxdO > Le*

where f=xs, V={0,a,...,ai-i} and dO refers to the normalized invariant
measure on the orthogonal group SO(k).

For the sake of clarity, the case k =2 will be handled separately. The
complete proof of Proposition 3 is given in section 3 of this paper. The last
section is an appendix in which it is shown how a new proof of Roth’s theorem
(see [5]) can be obtained using similar ideas. The letters 0< ¢, C < denote
numerical constants

2. A proof of the Katznelson-Weiss theorem

As usual F(£)= [z F(x)e >"*®dx stands for the Fourier transform. In case
k =2, the left member of (1) becomes

@ [ [iwre+maoan = [f©f- oo = [17©Fs|¢)a
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where o denotes the normalized arc-length measure of the unit circle. Thus

3 (&)= Clel? and |1-6(8)[< Cl£l
Also, by definition of f

f©-fols2e| xolas;  (f@)-1All<ClellAl

Hence, for 8 >t to be specified later, as a consequence of (3)

[irerswienae={[ +f o+ . lf@Feuede

= %J'llilim_'] If(g)Ing B I{m"<lfl<s*‘r') If(§)|2d§
- oo™ e

zClaP-cs”|Al- [ \f(©)Fde

(6 '<|g]l<8 1)
Assume 8 <] A [’ It is clear that there exists some

1

£

js C(log%)e" ~%log

satisfying

f i [fEFdE<Ce?
(857 <lgl<s™' "
and therefore
jj f()f(x + ty)dxa(dy)Z3CAT. QED
ReMARK. Combined with the results on the spherical maximal function in the

plane, Theorem 1 can be improved as follows:

THEOREM 1'. If A CR?, 8(A)>0, there exists | = I(A) such that whenever
[, > 1 there is a point x € A fulfilling the condition

{Ix-yly€A}D[LL]

Denote P, the Poisson-semigroup kernel on R*. Thus P,(£) = ¢ "¢, In general,
let K,(x)=t"*K(t 'x) satisfying K,(£) = K(t£).

The key estimate of [1] related to the planar spherical maximal operator can
be formulated as follows:
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ProposITION 1. For p>2, there are constants C{(p)<w and a{p)>0
satisfying

@ max|[f —(f * P)] + o: |

=co) ()71 w

Similarly, as in proving Theorem 1, the negation of Theorem 1’ leads to a subset
A of [0,1F, |A|> ¢ and a sequence of positive numbers

SIZHh >8> 0> >85>
where J can be taken arbitrarily large, satisfying the properties
) Sin <1
and
xEAN[s,1-5] > sup [lr —f)*a]=1 (f=1. and R =][0,1]).

Hence, we may write for a fixed 7 >0 and choosing j <J large enough

© [1s0p (@ =pral<a-n [

Fix 6 > 0. As a consequence of (4), we may write

5i>t>y

)

sup [[f = f * Py, ] * o,

l>li

‘ +7<C8" +.
For ¢ < s, also ,,
®) [[(1x = f)* Py % 0] (x) — [(1x = ) * Po-sy J(0)| = | P57y = (Pory, * 00)s < C6.
Thus, again by (4), using (6), (7), (8)
Cll{(1x = f)* P ] = [(1x = f)* Pay ]ll»

= f f sup {[(1x = )* Py, x 0] = [(1x = ) * Py * 0.}

5>

%(l—f)ff—ff[(lg —f)* P, ]-C8" — 1

;—2fff+(ff)2—ca"—f

Z(e~271)e - C6" — 1.
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Taking 7,8 small enough and J sufficiently large, a contradiction follows.
Indeed, if 4., <3, then for 2SEp=o

{1 P- =PIk} = Ul

This completes the proof of Theorem 1.

3. Proof of Theorem 2 in the general case

Let V ={0,ai,a,,...,ac-} be non-degenerated. Simple invariance arguments
show that the left member of (1) may be rewritten as

j FEf(x + ty)f(x + ty2) -~ f(x + tye-)a T (dy)ay, (dys) - - a5,y (dyes)

©)

where o) _,, . is the average on a (j)-dimensional sphere in R* dependent on
the points yi,..., yi-;-; already fixed and on V. We will use the estimate

(10) 16D e (]S o1+ dist(E [y ey

which is a consequence of the decay at infinity of the Fourier transform of the
seq y y

j-sphere in R”*'. Denote Gi» (m <k) the Grassmannian of m-dimensional

subspaces of R* endowed with the normalized Haar-measure.

LEmMMAa 1. Form<k

an [, [, @R f@Fa- e 0yazar < s + 871

Proor. Estimate the left member of (11) as
Callf [+ c{ sup, L [dist(¢, F) + 1]-PdF} IfIE.

ProOF oF THEOREM 2. Denote for simplicity
dQ;(ys,...,y) = c“ O (dy)a} dyz) - - o7, (dy).
Fix 8 >0 and compare the expressions
(12) I FOOf(x +ty1)- -« f(x + tye-2)f (x + ty-1)dxd Q—i(y1, - - ., Yu1)

and
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(13) I FOf(x +1y) - fx + tye)(f * Po)(x + tye-1)dxd Que—i(yn, - . o, Y1)
which difference can be estimated as
'(12)_ (13)| = ] " [f - (f * Py, )] * [a.(yll)----v)'k—z]‘ "2‘10"—2()’1" o )’k-z)
or by Parseval’s identity, using (10), (11), as
" ) _ 12
(14) Cv[ f L [FEF[1— e P {1 + dist(1, F)}‘”’dde} = C8"|fl.
Next we compare the expressions
(15) f fE( * Po v )(x)f(x + ty) - - - f(x + tye-2)dxd Qie—i(y1,.- .., Y1)
and
(16) f f(x)f(x + t)’l) e f(x + tyk—Z)(f * Ps“n)(x + t}’k—l)dXko-x()’1, veey )’k—l),
which difference is simply majorated by
sup (£ ¢ Per1)(x) = (F * Pot)(x + 1)
/2
< i 21 . p2milen€) |2, —~8- ¢l
a7 = sup{ [ @11 - 0P|
< Cs|flL.
Collecting estimates, it now follows that
1(12) - (15)| = [(12) - (13)| + [ (15) - (16)| + | (13) ~ (16)]

= CB | fla+I(f * Po-r) = (f * Pa)llo-
In the expression (15)

(15)= f f)(f * P )(x)f (x + ty1) - - - f(x + tye—2)dxd Qu—o(y1, . ., Yx-2),

the variable y,_, does not appear any more. We treat (15) the same way as (12)
where y,_, plays the réle of yi_,. Thus defining

7= f F) * P P (x)f (x + ty)) - - - f(x + tye-s)dxd Qie—s(ys, . . ., Ye-3)

similar computations give
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1A5) = (A7) = Co(8 + 8 D)+ I1(f * Po-r) = (f * Pa).

Iteration of the procedure yields

|02)- [ f)(5 P (0)ee
(18)
< Cv(k8 +3 6"‘)||f||2+ KI(f * Psto) = (F % o)l

Further

e* §I(f*Pr‘:)k
S [ (P P10 % P~ + Pl

S [ 1.7 % P 1 P = [P 5 P T
+H(f = Po) = (f  Poo)e

where the second term is dominated by

Va{ [ ¢+ Py | [sz*(f*Pa—u)k"]’]”2

= \/E{J’ (f * Psr <0 = J' T Ps,,z)z"‘"’]m

= Ck|\(f * Ps-10) = (f * Ps-ro * Pl
= Ck&’||f ||
Therefore, as a consequence of (18) and previous computation
(12)Z " ~ Cok8" | fl: = I (f * Pa) = (f * Po=) ek +1).

Taking suitable t €{t; > £,> - -+ >} (.1 <3¢), we may dominate

I6f* Pu) =+ Pl =5 (1083 1

so that
1
(12)=z ¢* - cvk(s“‘+r' (log:s-))\/;‘>%£"

for an appropriate choice of & and J. This completes the proof.
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4. Appendix: A proof of Roth’s theorem on arithmetic progressions of
length 3
Let G be a compact Abelian group and I'= G the dual group.
THEOREM 3. Given € >0, there exists €' = £'(¢) such that whenever f is a

function on G, 0=f=1 and [sf(x)dx > &, then

2 ijxG f(x)f(x + y)f(x +2y)dxdy > ¢’.

Applying the result to a finite cyclic group G = Z/NZ (taking N large enough)
and f=ys (S CG, |S|> ¢) yields Roth’s theorem ([5)).
The proof is based on two lemmas:

LemMa 2. [[f A(x)fa(x + y)fa(x +2y)K(y)dxdy | Z | K lae - N f I £

2/3
2 .

PROOF.

[KF1u ] fo- + 9 +2)K (y)dy)]
=il fo(- + )+ 29)K ()Y aco

and the second factor is dominated by || K [l fllllf[l.- Reversing the role of
fi,f> and making the product gives the estimate.

LeEMMA 3 (Bozejko-Pelczynski theorem on invariant approximation, cf.
[8]). Given a finite subset A of I and v > 0, there exists a kernel K satisfying

(i) Kz0,K=0 and K(0)=1,

() |[K(y)=1|<7fory€A,

(iii) |supp K| < N(A],7).

PrOOF OF THEOREM 3. Let f be as in Theorem 1. Combining Lemmas 1 and 2,
it follows that given a kernel K with K finitely supported, there exists K’
satisfying (i) of Lemma 2 and

@) |K-(K*K")|<T,

”I fO)f(x + y)f(x +2y)K (y)dxdy

®
- [[ ¢ Ky@ K + 93¢+ KO+ 29)K ()asdy | <,

@) |supp K'| < N'(supp K|, | K |l-, 7).
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Take K,=1. Previous considerations and an inductive construction lead to a
sequence {K; }Jo=;<, satisfying (i) of Lemma 2 (I is a positive integer of size ~ ¢ 7).
Denote f. = f* K. By 2), |f. — (f * Kis))| < 7. Thus

Vo = =B+ =20 fod SN ferrlE+ NI = 20f ) + 27
=l falR=NfE+27

and summation shows the existence of some 1 =i =] fulfilling

Ifior = filh <47 +217

and hence

l” firr(X)fis(x + y)finr(x + 2y)Ki(y)dxdy

%) - ff firX)fiar(x + y)fi-i(x +2y)K,-(y)dxdy‘ <127 +6.

Assume (1) does not hold. From (3) and the construction (K = K;, K’ = K,.,) it
now follows from (5) that

(7) Uf firr(x)fi-i(x +)’)fi—1(X+2y)K.-(y)dxdy'< 13r+6I"+ | K ..

Also, for y=1,2

[[ 126+ )= fesx + (= Dyl Kty ey

®) ={[[ 1+ - oo PRy |

= \/i(llf.-‘lllﬁ —{fi-r, i x K))'"
<4Vr

which permits us to replace in the left member of (7) fi-,(x + y), f-i(x +2y) by
fi-i(x). Hence

e (L f)aéjff,»_,(x)sK;(y)dxdy <167 +61" + | K|

giving a lower bound on &'.

ReMARK. It follows, for instance, from the construction of Salem and
Spencer (see [6], p. 252) that £'(¢) is not a polynomial function of ¢ in Theorem
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3. However, there exist methods providing better bounds than results from the
previous argument.
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