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ABSTRACT 

Let k ~ 2 and A a subset of R k of positive upper density. Let V be the set of 
vertices of a (non-degenerate) ( k -  1)-dimensional simplex. It is shown that 
there exists l = I(A, V) such that A contains an isometric image of l'. V 
whenever I' > I. The case k = 2 yields a new proof of a result of Katznelson and 
Weiss [4]. Using related ideas, a proof is given of Roth's theorem on the 
existence of arithmetic progressions of length 3 in sets of positive density. 

1. Introduction 

The following result has been obta ined  by Katznelson and Weiss [4]. 

THEOREM 1. Whenever A is a subset of R E with positive upper density, there is 

a number I = l ( A )  such that I x -  y[ = l' for some x,y E A,  fixing any l '> I. 

Recall that A C R k has positive upper density provided 

_ _ [ B ( O , R ) A A [  
8 ( A ) - - l i r a  [ B ( 0 , R ) [  > 0  

where B ( O , R ) =  {x E R  ~ ; [ x l <  R}. 

Their  a rgument  combines  ergodic theory  and measure  theory.  In the next 

section, a short  p roof  will be given based on e lementary  harmonic  analysis. This 

proof  can be e labora ted  in order  to get the result men t ioned  above:  

THEOREM 2. Assume A C R  k, 8 ( A ) > 0  and V a set of k points spanning a 

(k - 1)-dimensional hyperplane. There exists some number I such that A contains 

an isometric copy of l'. V whenever l '> I. 

REMARKS. (a) T h e o r e m  2 is of  the same nature  as the general izat ions of  
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Szemer6dy's theorem [7] obtained in [3] (see also [2]). More precisely, the 

dilations are replaced by rotations. Although the method presented here 

requires an increasing dimension, the exact r61e of the dimension k does not 

seem well understood yet. 

(b) The following simple example clarifies the necessity of the non-degeneracy 
hypothesis on the set V. Let V = { - 1,0,1} and A = {x E R k ;I x 12 E [0,~o] + Z+}. 

Clearly ~ ( A ) >  0. Assume now x E A and y ~ R k, }y [ = t satisfying x + y E A 

and x - y E A .  Then 

2t2 = 2]y ] 2= [x + y ]2+ Ix - y  12-21x I: ~ [-k,~] + Z+ 

implying the existence of some k E Z+ s.t. 

5V-~" 

Consequently, there are arbitrary large values of l such that A does not contain 

an isometric copy of I.V. This example permits several variations. 

It is easily seen that Theorems 1 and 2 result from the following "compact"  

version. 

PROPOSITION 3. Let V be as in Theorem 2, diam V <  1. Let A C[0,1] ~, 

I A I > e and 0 < tj < 1 a sequence satisfying tj+l < ½ t~. Then there exists j <= J(e, V)  

such that A contains an isometric image of tj. V. In fact, for t = tj 

(1) f.~ fso,~, f(x)f(x + t O a O . "  f(x + tOak-1)dxdO >½e k 

where f = XA, V = {0,aj,...,ak-1} and dO refers to the normalized invariant 

measure on the orthogonal group SO(k).  

For the sake of clarity, the case k = 2  will be handled separately. The 

complete proof of Proposition 3 is given in section 3 of this paper. The last 

section is an appendix in which it is shown how a new proof of Roth 's  theorem 

(see [5]) can be obtained using similar ideas. The letters 0 < c, C < o0 denote 

numerical constants 

2. A proof of the Katznelson-Weiss theorem 

As usual F ( ~ ) =  fak F(x)e-2~"x,~>dx stands for the Fourier transform. In case 

k = 2, the left member of (1) becomes 
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where cr denotes the normalized arc-length measure of the unit circle. Thus 

(3) [6"(~)1 < C[~[- '  and [1-6"(~)[< C[~[. 

Also, by definition of f 

If(~:)-f(o)[ <--2~f~ I<x,~>lex; If(~)-IAII<cI~IIAI. 

Hence, for 8 > t to be specified later, as a consequence of (3) 

>IL,, ' 
_ c8,,2f I?(,)12d, 

=> c,[A 12- cs"21A I- I~,-'<~,r<,-',-'J ]f(Ol2d~" 

Assume 8 '~ ]A ]2. It is clear that there exists some 

1 -'--~log~ j < C  log~ e 

satisfying 

and therefore 

f[lstFl<[~[<~_ltl_,] li(~)]2d~ <~ I C l e  2 

f l f(x)f(x t~y)dxo'(dy)> ½Ct[A [2. QED + 

REMARK. Combined with the results on the spherical maximal function in the 
plane, Theorem 1 can be improved as follows: 

THEOREM 1'. If A CR 2, 8 ( A ) > 0 ,  there exists l =  l(A ) such that whenever 
it > ! there is a point x E A fulfilling the condition 

{Ix-yl;y~A}~[l,l,]. 

Denote P, the Poisson-semigroup kernel on R k. Thus a6,(~ :) = e -'t~. In general, 

let K,(x)= t-kK(t-'x) satisfying /~,(~)=/((t~:). 
The key estimate of [1] related to the planar spherical maximal operator can 

be formulated as follows: 
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PROPOSITION 1. For p > 2 ,  there are constants C ( p ) < o o  and a ( p ) > 0  

satis[ying 

/ I \ o,(p) 
(4) maxl[f-(f*P,)]*cr. I <=C(p)(~) II/ll,, to>t. 

S~to p 

Similarly, as in proving Theorem 1, the negation of Theorem 1' leads to a subset  

A of [0,1] 2, [A l >  E and a sequence  of positive numbers  

sj> t,> s2> h> . .. > ss > b 

where  J can be taken arbitrarily large, satisfying the propert ies  

(5) s , ,  < ' t, 

and 

xEAN[ss ,  l - s i l2 f f  s u p [ ( 1 R - f ) * o , ] = l  ( / = I A  and R=[0 ,112) .  
sj>t>tj 

Hence ,  we may write for a fixed z > 0 and choosing j < J large enough 

(6) f [ sup [ ( 1 , - f ) * ¢ , ] < ( a - , )  f [. $j)|>lj  

Fix 8 > 0. As a consequence  of (4), we may write 

sup [ ( 1 R - f ) * o ' , ] - s u p  [(1R-f)* P~,,*cr,]l I 
I I  

sl >t>lj xl>t>tj 1| I 

(7) 
<= sup[[f-f*P,,,l*cr,[ + z < C S ~ + r .  

t > l  I p 

For  t < sj, also 

(8) l I(1, - l )  * e~-',, * or,] (x) - [(1, - ]') * P~-,,, ](x)l--< II e,- ' , ,  - (e,-,,,  • < c8.  

Thus,  again by (4), using (6), (7), (8) 

c II [(1, - .f) • P,-,,, ] - [(1R - f )  * e,,, ] 

__> f jr s u p  {[(1R - f )  * P,,, * ~ , ]  - [(1R - f )  * P , - , , ,  * (r,]} 
J sj>l>tj 

--> (e - 2 r ) e  - (?8 ~ - r. 
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Taking ~',8 small enough and J sufficiently large, a contradiction follows. 

Indeed, if ti+~ < ~ ti, then for 2-< p =< 

* P , . I ) -  ( /*  P,, p = p. 

This completes the proof of Theorem 1'. 

3. Proof of Theorem 2 in the general case 

Let V = {0, al, a2 ..... ak-1} be non-degenerated. Simple invariance arguments 

show that the left member of (1) may be rewritten as 

f f (x) f (x  ty,)f(x t y 2 ) " ' f ( x  tyk-~)tr'k-l)(dy,)tr~,-2)(dy2).., o'~l,)....,k_~(dyk-i ) + + + 

(9) 

where tr~ ~ is the average on a (/')-dimensional sphere in R k dependent on l " ' " Y k  - j -  I 

the points yi . . . . .  Yk-j-J already fixed and on V. We will use the estimate 

(10) I o'y,. ,y~_,_,(~)l _-< Cv[1 + dist(~,[y, . . . .  , yk_,_d)] 

which is a consequence of the decay at infinity of the Fourier transform of the 

j-sphere in R j÷~. Denote Gk,,, (m < k) the Grassmannian of m-dimensional 
subspaces of R k endowed with the normalized Haar-measure. 

LEMMA 1. F o r m < k  

(ii) fR, f~.m [dist(~,F)+ l]-'[f(l~)V(l-e-"~')2d(;dF < Ck(8 + 8"n)I[fH~. 

PROOF. Estimate the left member of (11) as 

CsUfH~+ C /  sup ( [dist(~,F)+ I]-°dF}Uf[[~. 
I. I~l>~-m Jo,. .  

PROOF OF THEOREM 2. Denote for simplicity 

dfij(y,, ..., yj) = o'~-')(dy,)cr~]-2)(dy2) " " " ¢r,,.....,,_,(dyi).~k-" 

Fix 8 > 0 and compare the expressions 

(12) f f(x )f(x + tyl)""" f(x + tyk-2)f(X + tyk-,)dxdfl,-,(y,, . . ., yk-z) 

and 
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(13) f [ ( x ) f ( x  + tyt)" ' '  [(x + tyk-2)(f* Pn,)(x + ty~_,)dxdtq~_~(y, . . . .  , y k - , )  

which difference can be estimated as 

1(12) - (13)1 ~ J I1[/- (/* P,,)I * [~;','.....,,-d, II=da~-=(y, .... , y~-~) 

or by Parseval's identity, using (10), (11), as 

(14) Cv . I[(01~[1 - e-"~']~{1 + dist(ff, F)}-md~dF <= Cv8"*11[112. 
k,k - 2  

Next we compare the expressions 

f f(x)q ,,)(x)f(x t y , ) . . ,  f(x ty~_,)atxd~_,(y, . . . .  ,y~_,) p,- + + (15) 

and 

£ 
(16) J f ( x ) / ( x  + ty , ) .  . . f ( x  + tyk-2)([ * P , - , , ) ( x  + tyk_~)dxdl~_~(y ,  . . . . .  y~_,), 

which difference is simply majorated by 

sup tlq * P , - , , ) ( x ) -  ( f  • P,- , , ) (x  + ty)[[:,,., 
fyl<~ 

(17)  sup[f I:(r;)l'll-e''""l'e-"'""a¢}" 
lyl<l L J  

< ca Ufll2. 

Collecting estimates, it now follows that 

1(12)- (15) 1 ~ 1(12)- (13) 1 + 1(15)- (16) 1 + 1(13)- (16) 1 

<-- C~5 '"11[ }}2 + IIq* P~-,,)- ( f*  P,,)II,. 
In the expression (15) 

(15) = / / ( x ) q .  e , - , , ) ( x ) l ( x  + q , ) .  . . / ( x  + qk_ . )axaa~_ , (y ,  . . . .  , y~_2), 

the variable yk-~ does not appear any more. We treat (15) the same way as (12) 
where y~-~ plays the r61e of y~_~. Thus defining 

(17) = J f (x ) ( f ,  e , - , , ) ' (x ) t (x  + q , ) . . . / ( x  + ty~_3)axaak_,(y, . . . . .  y~-0 

similar computations give 
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1(15)- (17)1 =< c,,(8 + a"~)ll f I1~ + II(f * P,- , , ) -  ( f  * e,,)l12. 

Iteration of the procedure yields 

(12)- f f(x)(f * P.-,,)~-'(x)dx I 
(18) k-, 

C,,(k8 + ~ 8") l l f l l=+ k II(f* P , - ' , ) - ( f *  e,,)ll=. 

Further 

k < f ( f  )k E ~ -  * i I :)8-tt 

f (f * P.-,, F ' ( f  * P.,) + II(f * P.,) - (/* P~-,,)II~ 

--< f f. (f * P~-,,)"-' + II(f* e~-,,)"-' - [e~, • (f Ps-,,)k-']ll: 

+ tt(f* P,,)-  (f * t'~-,,)ll~ 

where the second term is dominated by 

--< Ckl l ( f .  e,- , , )-  ( f .  e,-,, • t',,,2)ll; 

<= Ck8211fl12. 

Therefore, as a consequence of (18) and previous computation 

(12) _-> e '  - CvkSU411f[[z -tl(f * P*,) - (f * Ps-t,)]]2(k + 1). 

Taking suitable t E {h > t2 > - ' -  > tj} xJ~t +t < ½ tj), we may dominate 

< C  1 
II(t* P,,)-  ( f *  P,-,,)II~ = 7 (log~ )llfll~ 

so that 

( (1)) , ,  
(12)_->t~-Cvk Bu4+J -' log~ X/'-ts>~e 

for an appropriate choice of 8 and J. This completes the proof. 
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4. Appendix: A proof of Roth's theorem on arithmetic progressions of 
length 3 

Let G be a compact Abelian group and F = t~ the dual group. 

THEOREM 3. Given e >0,  there exists e '= e'(e) such that whenever f is a 
function on G, 0 <- f <= 1 and f~ f(x)dx > e, then 

(1) f fo×G [(x)f(x + y)f(x + 2y)dxdy > E'. 

Applying the result to a finite cyclic group G = Z/NZ (taking N large enough) 

and f = Xs (S C G, [S [ > e) yields Roth's theorem ([5]). 

The proof is based on two lemmas: 

I f f f , (x)f2(x + y)/3(x + 2y)K(y)dxdyl < II K IIA,~,,rlL, It.f, I1"~11 f, II~ '3. LEMMA 2. 

PROOF. 

I(f, , f f~(. + y)f . , ( '  + 2y )K (y )dy ) [  

--< I1?, I k l l f h (  + y)f3( - + 2y)K(y)dy IIA,~,, 

and the second factor is dominated by IIKL,~,llf21Mff3112. Reversing the r61e of 
f~,f2 and making the product gives the estimate. 

LEMMA 3 (Bozejko-Pelczynski theorem on invariant approximation, cf. 

[8]). Given a finite subset A of F and z > O, there exists a kernel K satisfying 
(i) K >= O, g >= 0 and K(O) = 1, 
(ii) IK(v)-ll<Tfor y E A ,  
(iii) [supp/(1 < N(IAI,~'). 

PROOF OF THEOREM 3. Let f be as in Theorem 1. Combining Lemmas 1 and 2, 

it follows that given a kernel K with /( finitely supported, there exists K' 

satisfying (i) of Lemma 2 and 

(2) [K - (K * K')[ < z, 

[ f  J f (x) f (x  + y)f(x + 2y)r(y)dxdy 

(3) 
- f f  q ,  K')(x)([* K')(x + y)( /*  K')(x + 2y)K(y)dxdyl < ¢, 

(4) I supp K'I < N'(I supp K I, II g I1-, ~). 
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Take K,, = 1. Previous considerations and an inductive construction lead to a 
sequence {K~},,_<~<, satisfying (i) of Lemma 2 (I is a positive integer of size - e-3). 

Denote f, =f*K~. By (2), If~-(/ ,  * K~+,)I< r. Thus 

II f,+, - / ,  I1~ = Ill,+, I1~ + Ill, I1~ - 2 (/,,/,<) =< r[~< I1~ + II/, I1~ - 2(/,, f)  + 2r 

-<-II f,.+, I1~ -IIf~ I1~ + 2r  

and summation shows the existence of some 1 -< i _-< I fulfilling 

II/,.+, - ~ ,  II, < 4~- + 2 I - '  

and hence 

I f f  [~+,(x)f~+,(x + Y)[~+,(x + Zy)K~(y)dxdy 

(5) - f f [,_,(x)[,_,(x + y)/,_,(x + 2y)K,(y)dxdy < 1 2 r  +6.  

Assume (1) does not hold. From (3) and the construction (K = K~, K ' =  K,.~) it 
now follows from (5) that 

(7) I f f  f, ,(x)f,-,(x+y)f,-,(x+2y)K,(y)dxdy <13r+6l  '+e',,K,,,~. 

Also. for y = 1,2 

f f  I/~-,(x + y y ) -  [~_,(x + (y - 1)y)lK,(y)dxdy 

{fl (8) N I/~ ,(x + y ) -  [~_,(x)t2K,(y)dxdy 

= v ~ ( l l / , - ,  I Ig -<f , - , ,~ - ,  * K , ) )  'a 

< 4 x G  

which permits us to replace in the left member of (7))~_,(x + y),f~_,(x + 2y) by 
f/_,(x). Hence 

(L')3 fb e 3<= =< -I(X) 3K~(y)dxdy<16r+6I-'+e' = 

giving a lower bound on e'. 

REMARK. It follows, for instance, from the construction of Salem and 

Spencer (see [6], p. 252) that e ' (e)  is not a polynomial function of e in Theorem 
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3. H o w e v e r ,  there  exist  m e t h o d s  p rov id ing  be t t e r  b o u n d s  than  resul ts  f rom the 

p rev ious  a rgumen t .  
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